
Numeric Response Questions

Ellipse

- Q.1 Find the number of real tangents that can be drawn to the ellipse $3x^2 + 5y^2 = 32$ passing through (3,5).
- Q.2 A man running round a race course notes that the sum of the distances of two flag-posts from him is always 10 metres and the distance between the flag-posts is 8 meters. The area of the path he encloses is $k\pi$ then find k.
- Q.3 An ellipse having foci at (3,1) and (1,1) passes through the point (1,3). Then find its eccentricity.
- Q.4 If the ecentricity of an ellipse be 5/8 and the distance between its foci be 10, then find its latus rectum.
- Q.5 Suppose S and S' are foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$. If P is variable point on the ellipse and, if Δ is area of the triangle PSS", then find the maximum value of Δ
- Q.6 Tangent at a point P on $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ meets the x-axis at A and y-axis at B. The locus of the midpoint of AB is $\frac{a^2}{x^2} + \frac{b^2}{y^2} = k$, then find k.
- Q.7 Find the radius of the circle passing through the foci of ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$, and having its centre (0, 3).
- Q.8 S_1 , S_2 are foci of an ellipse of major axis of length 10 units and P is any point on the ellipse such that perimeter of \triangle PS₁ S₂ is 15. Find the eccentricity of ellipse.
- Q.9 If extremities of diameter of the circle $x^2 + y^2 = 16$ are foci of an ellipse, then find the eocentricity of the ellipse, if its size is just sufficient to contain the circle.
- Q.10 If B and B' are the ends of minor axis and S and S' are the foci of the ellipse $\frac{x^2}{25} + \frac{y^2}{9} = 1$, then find the area of rhombus SBS'B' formed.
- Q.11 If the eccentricity of the two ellipse $\frac{x^2}{169} + \frac{y^2}{25} = 1$ and $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ are equal, then find the value of $\frac{a}{b}$.
- Q.12 For a point P on the ellipse $9x^2 + 36y^2 = 324$, with foci S and S, find value of SP + S'P.
- Q.13 Find the number of values of c such that the straight line y = 4x + c touches the curve $x^2/4 + y^2 = 1$.

- Q.14 If the eccentricity of the ellipse $4x^2 + 9y^2 8x 6y + 1 = 0$ is $\frac{\sqrt{5}}{k}$ then find k.
- Q.15 Find the product of the of length perpendiculars drawn from the foci upon any tangent to the ellipse $3x^2 + 4y^2 = 12$.

ANSWER KEY

1.2.00

2.15.00

3. 0.41

4.9.75

5. 12.00

6. 4.00

7.4.00

8.0.50

9.0.70

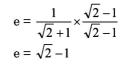
10. 24.00

11.2.60

12. 12.00

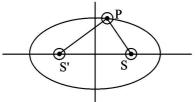
13. 2.00

14. 3.00


15. 3.00

Hints & Solutions

1.
$$S = 3x^2 + 5y^2 - 32 = 0$$
 (3, 5)


$$S_1 = 27 + 5 \times 25 - 32 > 0$$

Two tangents

Given: $e = \frac{5}{8}$

2.

$$PS + PS' = 10$$

$$2a = 10$$

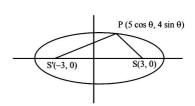
$$a = 5$$

$$2ae = 8$$

$$ae = 4$$

$$e = 4/5$$

$$b^2 = a^2 (1 - e^2)$$


$$b^2 = 25 \left(1 - \frac{16}{25} \right)$$

$$b = 3$$

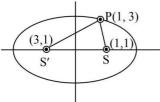
$$A = \pi ab = \pi \times 5 \times 3$$

 $=15\pi$

5.

 $\Rightarrow ae = \frac{10}{2} = 5 \Rightarrow a = \frac{5}{e} = \frac{5}{\frac{5}{2}} = 8$

 $b^2 = 64 \left(1 - \frac{25}{64} \right) = 39$


 \therefore Length of L.R. = $\frac{2b^2}{a} = \frac{2(39)}{8} = \frac{39}{4}$

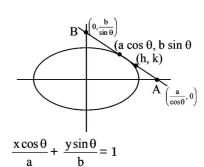
Now $b^2 = a^2 (1 - e^2)$

Area = $\frac{1}{2} \times 6 \times 4 \sin \theta = 12 \sin \theta$

 $(Area)_{max} = 12$

3.

$$PS + PS' = 2a$$


$$\sqrt{4+4} + 2 = 2a$$

$$2(\sqrt{2}+1)=2a \Rightarrow$$

$$\alpha = \sqrt{2}$$

$$2ae = \sqrt{4+0} \implies 2ae = 2 \implies ae = 1$$

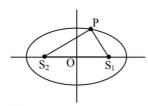
6.

$$h = \frac{\frac{a}{\cos \theta} + 0}{2}$$
, $k = \frac{0 + \frac{b}{\sin \theta}}{2}$

$$\cos\,\theta = \frac{a}{2h}\,,\,\sin\,\theta = \frac{b}{2k}$$

$$\cos^2\theta + \sin^2\theta = 1$$

$$\frac{a^2}{4h^2} + \frac{b^2}{4k^2} = 1$$


$$\therefore \text{ locus } \frac{a^2}{x^2} + \frac{b^2}{y^2} = 4$$

7.
$$\frac{x^2}{16} + \frac{y^2}{9} = 1$$
$$e = \sqrt{1 - \frac{9}{16}} = \frac{\sqrt{7}}{4}$$

foci are
$$(\pm\sqrt{7}, 0)$$

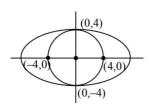
Radius of circle =
$$\sqrt{7+9}$$
 = 4

8.

$$2a = 10$$

$$\Rightarrow$$
 a = 5

$$PS_1 + PS_2 + S_1S_2 = 15$$


$$\Rightarrow$$
 2a + 2ae = 15

$$\Rightarrow$$
 10 + 10e = 15

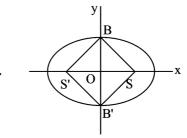
$$10e = 5$$

$$\Rightarrow$$
 e = $\frac{5}{10}$

9.

$$2ae = 8$$

$$b = 4$$


$$b^2 = a^2 - a^2e^2$$

$$16 = a^2 - 16$$

$$a^2 = 32$$

$$e = \sqrt{1 - \frac{16}{32}} = \frac{1}{\sqrt{2}}$$

10.

Area = 4.
$$\frac{1}{2}$$
 (ae)(b)

$$=2.(5.)(3) \sqrt{1-\frac{9}{25}}$$

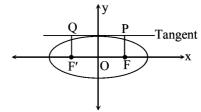
$$=30. \frac{4}{5}=24$$

11.
$$\sqrt{1-\frac{b^2}{a^2}} = \sqrt{1-\frac{25}{169}}$$

$$\Rightarrow \frac{a}{b} = \frac{13}{5}$$

12.
$$\frac{x^2}{36} + \frac{y^2}{9} = 1$$

$$\therefore$$
 SP + S'P = 2a = 12


13.
$$c = \pm \sqrt{a^2 m^2 + b^2}$$

$$c = \pm \sqrt{4(16) + 1} = \pm \sqrt{65}$$
 (two values)

14.
$$e = \sqrt{1 - \frac{4}{9}} = \frac{\sqrt{5}}{3}$$

15. Ellipse
$$3x^2 + 4y^2 = 12$$

$$\Rightarrow \frac{x^2}{4} + \frac{y^2}{3} = 1$$

(PF)
$$(QF') = (b) (b) = b^2 = 3$$